A Nonlocal First Order Shear Deformation Theory for Vibration Analysis of Size Dependent Functionally Graded Nano beam with Attached Tip Mass: an Exact Solution

Authors

  • A Jafari Faculty of Engineering, Department of Mechanics, Imam Khomeini International University, Qazvin, Iran
  • M Ghadiri Faculty of Engineering, Department of Mechanics, Imam Khomeini International University, Qazvin, Iran
Abstract:

In this article, transverse vibration of a cantilever nano- beam with functionally graded materials and carrying a concentrated mass at the free end is studied. Material properties of FG beam are supposed to vary through thickness direction of the constituents according to power-law distribution (P-FGM). The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on Timoshenko beam theory in order to consider the effect of shear deformation and rotary inertia. Hamilton’s principle is applied to obtain the governing differential equation of motion and boundary conditions and they are solved applying analytical solution. The purpose is to study the effects of parameters such as tip mass, small scale, beam thickness, power-law exponent and slenderness on the natural frequencies of FG cantilever nano beam with a point mass at the free end. It is explicitly shown that the vibration behavior of a FG Nano beam is significantly influenced by these effects. The response of Timoshenko Nano beams obtained using an exact solution in a special case is compared with those obtained in the literature and is found to be in good agreement. Numerical results are presented to serve as benchmarks for future analyses of FGM cantilever Nano beams with tip mass.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

free vibration of functionally graded size dependent nanoplates based on second order shear deformation theory using nonlocal elasticity theory

in this article, an analytical solution is developed to study the free vibration analysis offunctionally graded rectangular nanoplates. the governing equations of motion are derived basedon second order shear deformation theory using nonlocal elasticity theory. it is assumed that thematerial properties of nanoplate vary through the thickness according to the power lawdistribution. our numerical...

full text

Thermoelastic Analysis of a Functionally Graded Simple Blade Using First-Order Shear Deformation Theory

In this article, the thermo-elastic behavior of a functionally graded simple blade subjected to the mechanical and thermal loadings is presented, applying a semi-analytical method and a variable thickness cantilever beam model. A specific temperature gradient is employed between the root and the edges of the beam. It is assumed that the mechanical and thermal properties are longitudinal directi...

full text

Free Vibrations Analysis of Functionally Graded Rectangular Nano-plates based on Nonlocal Exponential Shear Deformation Theory

In the present study the free vibration analysis of the functionally graded rectangular nanoplates is investigated. The nonlocal elasticity theory based on the exponential shear deformation theory has been used to obtain the natural frequencies of the nanoplate. In exponential shear deformation theory an exponential functions are used in terms of thickness coordinate to include the effect of tr...

full text

Vibration Analysis of Functionally Graded Spinning Cylindrical Shells Using Higher Order Shear Deformation Theory

In this paper the vibration of a spinning cylindrical shell made of functional graded material is investigated. After a brief introduction of FG materials, by employing higher order theory for shell deformation, constitutive relationships are derived. Next, governing differential equation of spinning cylindrical shell is obtained through utilizing energy method and Hamilton’s principle. Making ...

full text

Free vibration behavior of bi-directional functionally graded plates with porosities using a refined first order shear deformation theory

This paper proposes the refined first order shear deformation theory to investigate the free vibration behavior of bidirectional functionally graded porous plates. This theory satisfies the transverse shear stress free conditions at the top and bottom of the plate, thus avoids the need of a shear correction factor. The rule of mixtures is employed to compute the effective material properties an...

full text

Nonlocal Bending Analysis of Bilayer Annular/Circular Nano Plates Based on First Order Shear Deformation Theory

In this paper, nonlinear bending analysis of bilayer orthotropic annular/circular graphene sheets is studied based on the nonlocal elasticity theory. The equilibrium equations are derived in terms of generalized displacements and rotations considering the first-order Shear deformation theory (FSDT). The nonlinear governing equations are solved using the differential quadrature method (DQM) whic...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 1

pages  23- 37

publication date 2018-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023